当前位置:首页 > 技术文章 > 正文内容

高中数学必修1-5常考难点

arlanguage1个月前 (03-26)技术文章19

必修1

第一章:集合和函数的基本概念

这一章的易错点,都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就会丢分。次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的“并、补、交、非”也就解决了。

还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。

第二章:基本初等函数

——指数、对数、幂函数三大函数的运算性质及图像

函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。

函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。

第三章:函数的应用

这一章主要考是函数与方程的结合,其实就是函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间灵活转化,以求能最简单的解决问题。关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这些难点对应的证明方法都要记住,多练习。二次函数的零点的Δ判别法,这个需要你看懂定义,多画多做题。

必修二

第一章:空间几何

三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。

在做题时结合草图是有必要的,不能单凭想象。后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。

第二章:点、直线、平面之间的位置关系

这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生多看图。自己画草图的时候要严格注意好实线虚线,这是个规范性问题。

关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,大多同学即使知道有这个概念,也无法理解怎么在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。

第三章:直线与方程

这一章主要讲斜率与直线的位置关系,只要搞清楚直线平行、垂直的斜率表示问题就错不了。需要注意的是当直线垂直时斜率不存在的情况是考试中的常考点。另外直线方程的几种形式所涉及到的一般公式,会用就行,要求不高。点与点的距离、点与直线的距离、直线与直线的距离,只要直接套用公式就行,没什么难点。

第四章:圆与方程

能熟练地把一般式方程转化为标准方程,通常的考试形式是等式的一边含根号,另一边不含,这时就要注意开方后定义域或值域的限制。通过点到点的距离、点到直线的距离、圆半径的大小关系来判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交等的多种情况,自己把几种对称的形式罗列出来,多思考就不难理解了。

必修三

总的来说这一本书难度不大,只是比较繁琐,需要有耐心的去画图去计算。

程序框图与三种算法语句的结合,及框图的算法表示,不要用常规的语言来理解,否则你会在这样的题型中栽跟头。

秦九韶算法是重点,要牢记算法的公式。

统计就是对一堆数据的处理,考试也是以计算为主,会从条形图中计算出中位数等数字特征,对于回归问题,只要记住公式,也就是个计算问题。

概率,主要就只几何概型、古典概型。几何概型只要会找表示所求事件的长度面积等,古典概型只要能表示出全部事件就可以。

必修四

第一章:三角函数

考试必在这一块出题,且题量不小!诱导公式和基本三角函数图像的一些性质,没有太大难度,只要会画图就行。难度都在三角函数形函数的振幅、频率、周期、相位、初相上,及根据最值计算A、B的值和周期,及恒等变化时的图像及性质变化,这部分的知识点内容较多,需要多花时间,不要再定义上死扣,要从图像和例题入手。

第二章:平面向量

向量的运算性质及三角形法则、平行四边形法则的难度都不大,只要在计算的时候记住要“同起点的向量”这一条就OK了。向量共线和垂直的数学表达,是计算当中经常用到的公式。向量的共线定理、基本定理、数量积公式。分点坐标公式是重点内容,也是难点内容,要花心思记忆。

第三章:三角恒等变换

这一章公式特别多,像差倍半角公式这类内容常会出现,所以必须要记牢。由于量比较大,记忆难度大,所以建议用纸写好后贴在桌子上,天天都要看。要提一点,就是三角恒等变换是有一定规律的,记忆的时候可以集合三角函数去记。

必修五

第一章:解三角形

掌握正弦、余弦公式及其变式、推论、三角面积公式即可。

第二章:数列

等差、等比数列的通项公式、前n项及一些性质常出现于填空、解答题中,这部分内容学起来比较简单,但考验对其推导、计算、活用的层面较深,因此要仔细。考试题中,通项公式、前n项和的内容出现频次较多,这类题看到后要带有目的的去推导就没问题了。

第三章:不等式

这一章一般用线性规划的形式来考察学生,这种题通常是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图,然后再根据实际问题的限制要求来求最值。

--END--

扫描二维码推送至手机访问。

版权声明:本文由AR编程网发布,如需转载请注明出处。

本文链接:http://www.arlanguage.com/post/3590.html

分享给朋友:

“高中数学必修1-5常考难点” 的相关文章

使用nginx部署前端html等静态页面

一、前言最近想要部署一个纯前端的静态页面,项目的内容很简单,也就是一些简单的html、css、js、jpg、mp3等静态资源,不涉及后端开发。之前一直都是使用Tomcat来部署项目的,因为涉及后端接口等方面的内容,这次再用它来部署纯前端的东西,显得大材小用,过于笨重。此时,使用nginx,便是最合适...

linux(centos)yum安装nginx最新版及配置文件

安装nginx及配置文件我们采用yum的方式安装最新版nginx,就两步即可。最新版本及其他Linux版本可见官方文档官方文档:http://nginx.org/en/linux_packages.html#stable请读者根据自己的版本选择配置:按官方文档,选择自己版本centos可看到步骤:1...

Windows中使用Nginx解决前后端分离部署中的跨域问题

说明现在的Java Web项目好多都使用前后端分离的开发部署方式,这样的好处有很多,比如:可以实现真正的前后端解耦,可以减少后端服务器的并发/负载压力,方便实现多端应用(网页端、移动端共用一个后台服务)、增加代码的维护性&易读性。一般我们会采用Nginx来部署前端代码,使用Tomcat来部署后台服务...

Linux系统非root用户下安装Nginx

通常使用Nginx或者Apache作为Web服务器时,默认监听80端口,因此默认会使用root用户去安装,而且,使用yum命令安装时,通常会安装到默认的路径下,默认路径通常是root用户才有执行权限的。如果不需要使用Nginx监听1024以下的端口,且对权限和网络管理比较严格时,能用非root权限解...

PHP日志记录

背景在生产环境中日志的重要性显而易见,能快速定位问题和程序的调优。在LNMP架构中怎么记录好程序中的错误日志。设置error_log记录PHP日志信息#将会向PHP报告发生的每个错误 error_reporting = E_ALL #关闭页面显示才能将错误回写到日志文件 display_err...

nginx location 多root理解location

由于应用需求,这个 r 目录需要单独拉出来做处理,nginx 最开始是这样写的: server { root /home/webadm/htdocs; index index.php; location /r/ { root /diska/htdocs; } location ~ \.php { f...