教学片段——每日点滴
(1)用函数性质画y=x+9/x 的图象;
(2)已知f(x)是偶函数f(2)=0,且在(一∞,0)是减函数,求f(x)<0的解集;
(3)用五点法作y=5sin(2x+丌/6)在一个周期的简图。
分析:(1)定义域为{x|x≠0}
当x>0时,x+9/x ≥6
当x<0时,x+9/x≤-6;
值域为{y|y≥6或y≤一6}
再由奇函数得岀图象,进而指出对勾函数的特征y=x+a/x (a>0)。抓住积为定值,理解其图象。
(2)指出奇偶性与单调性综合时,可以画简图。再进行变式训练,
(2')求f(x-1)<0与(x一1)f(x)>0的解集。
(3)(采用列表法得出正弦型函数的五个关键点后,进一步追问
由y=sinx怎样变化得到y=sin(2x+丌/6);再追问
若方程3sin(2x+丌/6)+2m-1=0在(0,丌)有两根,求m范围。
新高考前的积累。